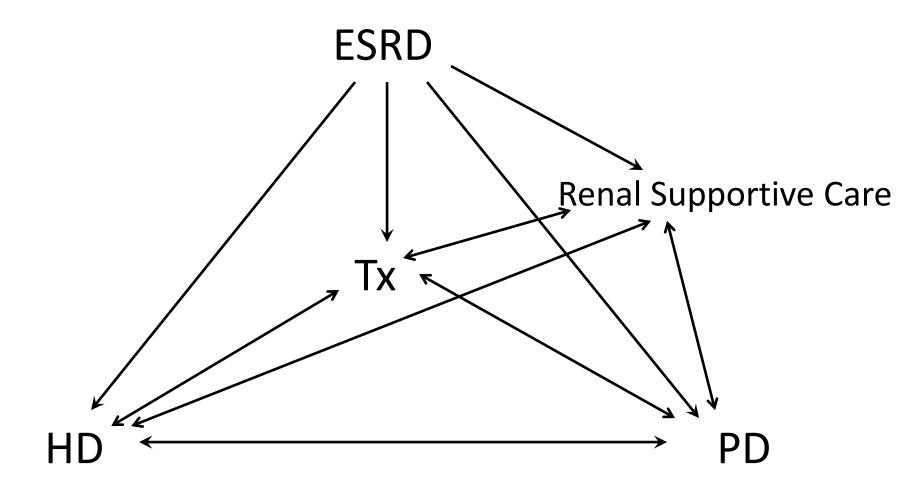
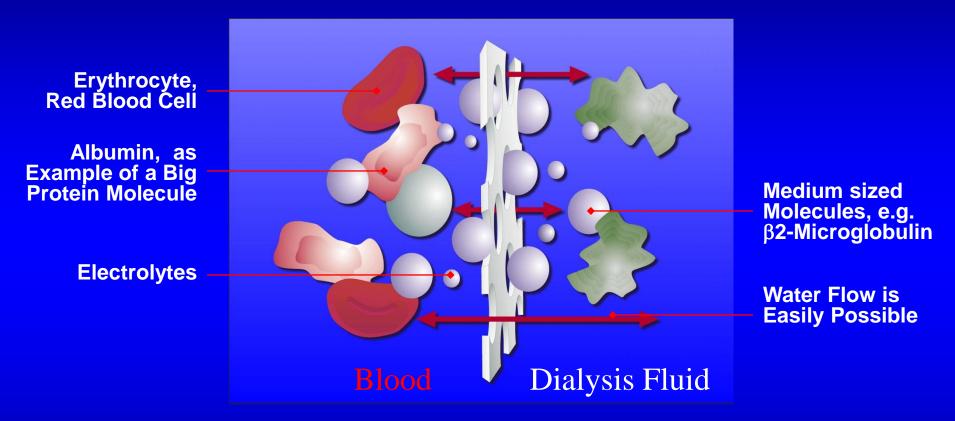
# **Peritoneal Dialysis**

#### Dr Kamal Sud


### Department of Renal Medicine - Nepean Hospital

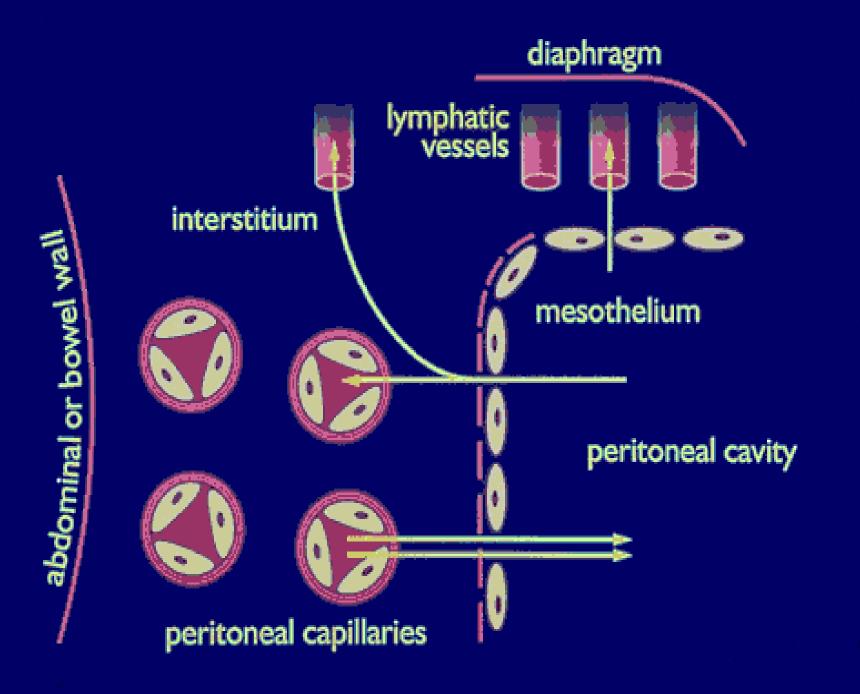
Clinical Associate Professor - University of Sydney (Nepean Clinical School)





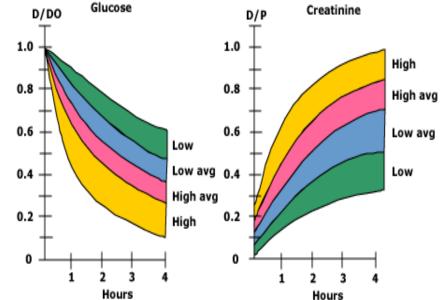

### ESRD – Integrated Care and Options




#### Principles of Dialysis: Diffusion and Ultrafiltration across a Semipermeable Membrane



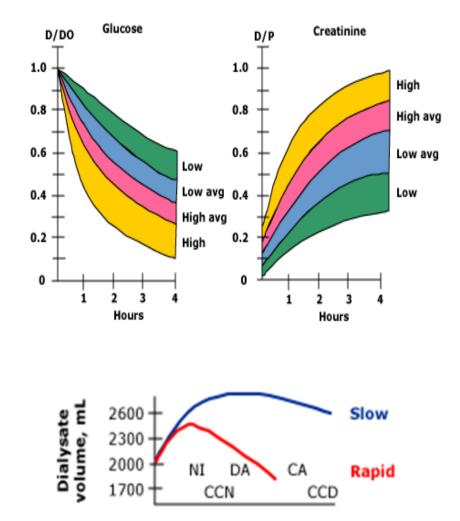
The semi permeable membrane functions similar to a fine sieve, only molecules that are small enough can pass.


# **Peritoneal dialysis**

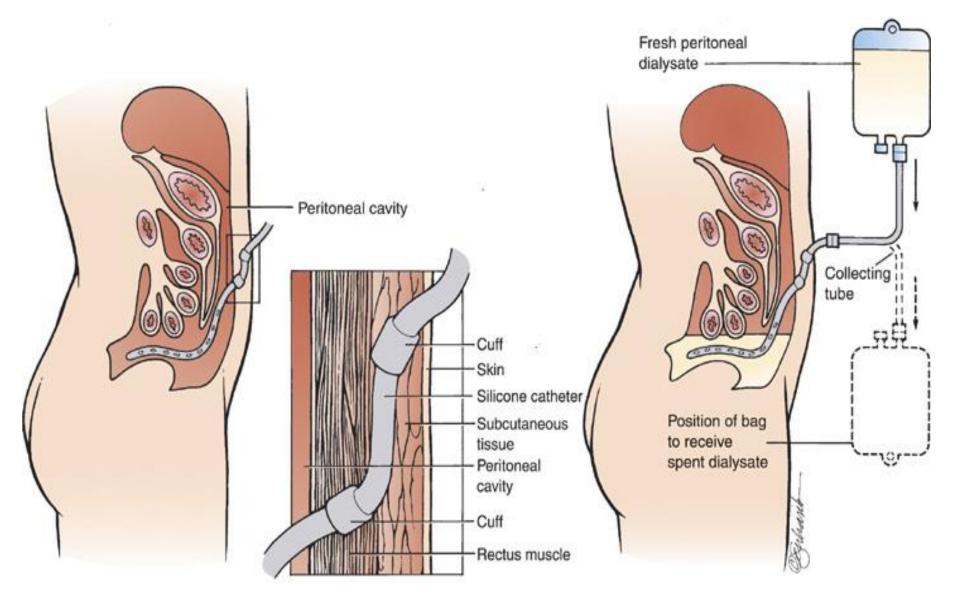
| Blood Side | Dialysate Side                 |
|------------|--------------------------------|
| RBC        |                                |
| WBC        | PD Fill Volume<br>2L, 2.5L, 3L |
| Urea       | Dwell Time                     |
| Creatinine |                                |
| Phosphate  | <b>_</b>                       |
| Sodium     | PD                             |
| Potassium  | - Lactate<br>-Bicarb           |
| Magnesium  | -Dicard                        |
| pH 🗕       |                                |
| Water      |                                |

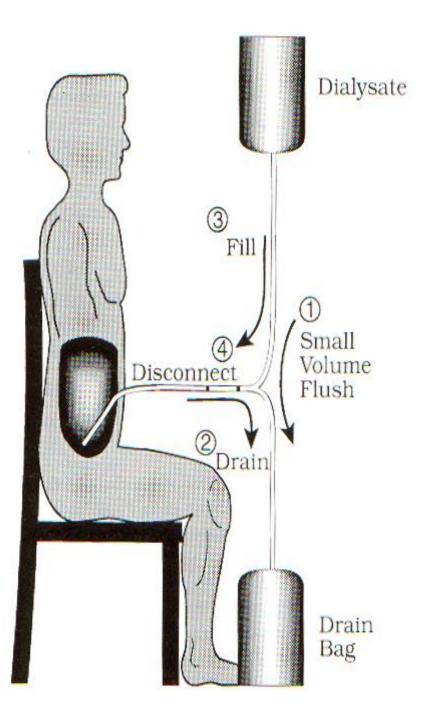


# PERITONEAL EQUILIBRATION TEST


- Gives us an idea of the transport characteristics of an individual's peritoneal membrane.
- Assessed by using equilibration ratios between dialysate and plasma for urea (D/P urea), creatinine (D/P creatinine) ...
- By waiting for equilibration, this test measures the combined effect of diffusion and ultrafiltration.



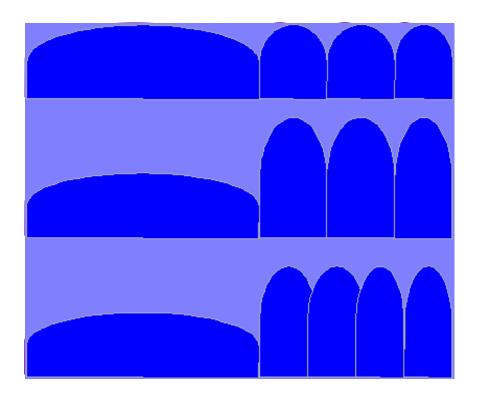

UF volumes are inversely proportional to peritoneal transport characteristics for solutes


High transporters rapidly absorb the osmotic agent into peritoneal capillaries, diminishing stimulus for ultrafiltration within a few hours of dwell. After equilibration is achieved, because of reabsorption of fluid through the lymphatics, the UF volume comes down with time.

Low transporters have good ultrafiltration, because the osmotic gradient is maintained throughout the entire dwell.



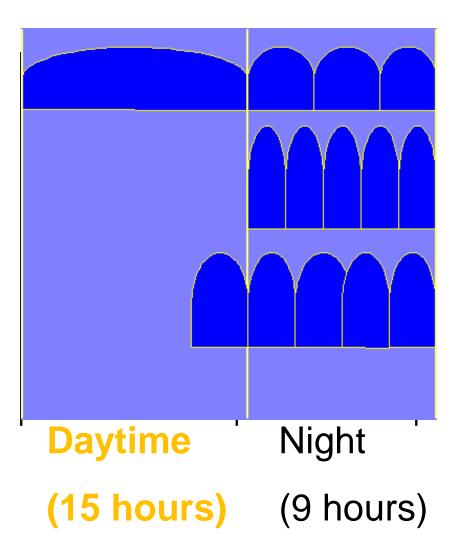
## **Peritoneal Dialysis Access**






4 times per day
(2-3L exchanges
20-30 minutes out
5-10 minutes in)

• 7 days a week


### CAPD-Continuous Ambulatory Peritoneal Dialysis



#### **Standard CAPD**

NightDay(9 hours)(15 hours)

### Continuous Cyclic PD and Nocturnal Intermittent PD



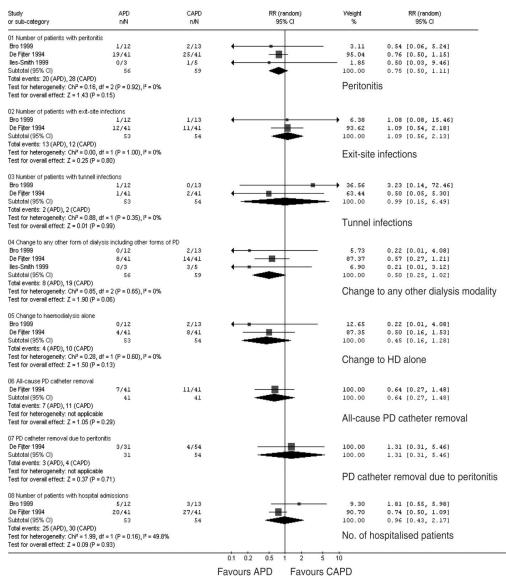
#### Standard CCPD

### NIPD

NIPD with an increased time on cycler (or manual exchange, or prolonged night PD)

### CAPD vs APD

#### Complications expressed as episodes per patient-year.


| Study<br>or sub-category                                   | Log [rate ratio] (SE)                                       |       | Rate ratio (ra<br>95% C | -         | Weight<br>% | Rate ratio (random)<br>95% Cl      |
|------------------------------------------------------------|-------------------------------------------------------------|-------|-------------------------|-----------|-------------|------------------------------------|
| 01 Peritonitis episodes pe<br>De Fijter 1994               | rpatient-year<br>-0.6162 (0.2236)                           |       |                         |           | 96.77       | 0.54 [0.35, 0.84]                  |
| Bro 1999                                                   | -0.5978 (1.2247)                                            | ←     |                         |           | → 3.23      | 0.55 [0.05, 6.07]                  |
| Subtotal (95% Cl)                                          |                                                             |       |                         |           | 100.00      | 0.54 [0.35, 0.83]                  |
| Test for heterogeneity: Ch<br>Test for overall effect: Z = | i² = 0.00, df = 1 (P = 0.99), l² = 0%<br>: 2.80 (P = 0.005) |       |                         |           | Peritonitis | s episodes per patient-year        |
| 02 Exit-site infection episo                               | des per patient-year                                        |       |                         |           |             |                                    |
| De Fijter 1994                                             | -0.0100 (0.2966)                                            |       |                         | >         | 95.79       | 0.99 [0.55, 1.77]                  |
| Bro 1999                                                   | 0.1248 (1.4142)                                             |       |                         |           | → 4.21      | 1.13 [0.07, 18.11]                 |
| Subtotal (95% Cl)                                          |                                                             |       |                         |           | 100.00      | 1.00 [0.56, 1.76]                  |
| Test for heterogeneity: Ch<br>Test for overall effect: Z = | i² = 0.01, df = 1 (P = 0.93), l² = 0%<br>: 0.01 (P = 0.99)  |       |                         |           | Exit-site i | nfection episodes per patient-year |
| 03 Hospitalisation episode                                 |                                                             |       | _                       |           |             |                                    |
| De Fijter 1994                                             | -0.5108 (0.2236)                                            |       |                         |           | 100.00      | 0.60 [0.39, 0.93]                  |
| Subtotal (95% Cl)                                          | • <sup>1</sup>                                              |       |                         |           | 100.00      | 0.60 [0.39, 0.93]                  |
| Test for heterogeneity: no<br>Test for overall effect: Z = |                                                             |       |                         |           | Hospitalis  | ation episodes per patient-year    |
|                                                            |                                                             | 0.2   | 0.5 1                   | 2         | 5           |                                    |
|                                                            |                                                             | Favou | irs APD F               | avours CA | PD          |                                    |

Kannaiyan S. Rabindranath et al. Nephrol. Dial. Transplant. 2007;22:2991-2998

© The Author [2007]. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org



### CAPD vs APD



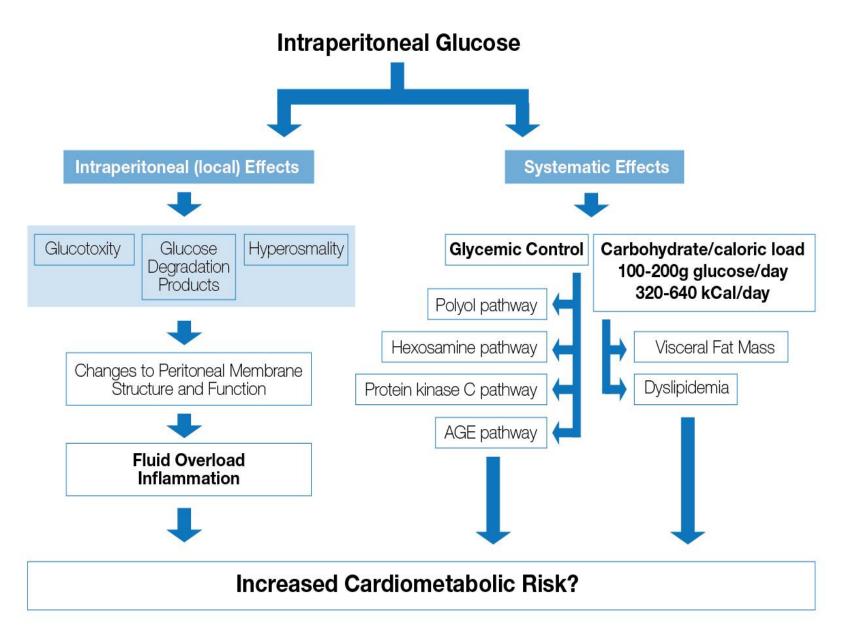
Impact of PD modality on various clinically important outcomes.

No differences in number of patients with exit site infections, tunnel infections.

No difference in technique survival



Kannaiyan S. Rabindranath et al. Nephrol. Dial. Transplant. 2007;22:2991-2998


### Currently available PD solutions

| Table 1   Selecte               | d perito | oneal dialysis | solutions cur           | rently available ir | Europe |                                                                                                         |                                                                                          |
|---------------------------------|----------|----------------|-------------------------|---------------------|--------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Solution<br>(manufacturer)      | рН       | Chambers       | Buffer                  | Osmotic agent       | GDPs   | Advantages                                                                                              | Disadvantages                                                                            |
| Dianeal®<br>(Baxter*)           | 5.2      | Single         | Lactate                 | Glucose             | High   | Easy to manufacture; low cost                                                                           | Low pH; poor peritoneal<br>membrane biocompatibility;<br>infusion pain; contains lactate |
| Extraneal®<br>(Baxter*)         | 5.6      | Single         | Lactate                 | Icodextrin          | Low    | Sustained ultrafiltration; reduced<br>hyperglycemia; improved metabolic<br>profile and body composition | Contains lactate; low pH; single<br>daily use only; hypersensitivity                     |
| Nutrineal®<br>(Baxter*)         | 5.5      | Single         | Lactate                 | Amino acids         | No     | Avoids glucose exposure; peritoneal<br>membrane protection; enhanced<br>nutrition                       | Contains lactate; low pH; single<br>daily use only                                       |
| Physioneal®<br>(Baxter*)        | 7.4      | Double         | Lactate/<br>bicarbonate | Glucose             | Low    | Improved biocompatibility; preserved<br>membrane defense; reduced infusion<br>pain                      | Local and systemic glucose<br>exposure; reduced peritoneal<br>lactate exposure           |
| Stay-safe®<br>(Fresenius‡)      | 5.5      | Single         | Lactate                 | Glucose             | High   | Ease of manufacture; low cost                                                                           | Low pH; poor peritoneal<br>membrane biocompatibility;<br>infusion pain; contains lactate |
| Balance®<br>(Fresenius‡)        | 7.0      | Double         | Lactate                 | Glucose             | Low    | Improved biocompatibility; preserved<br>membrane defense; reduced risk of<br>peritonitis?               | Higher but not neutral pH; local<br>and systemic glucose exposure;<br>contains lactate   |
| BicaVera®<br>(Fresenius‡)       | 7.4      | Double         | Bicarbonate             | Glucose             | Low    | Improved biocompatibility; preserved<br>membrane defense; improved<br>correction of acidosis            | Local and systemic glucose<br>exposure                                                   |
| Gambrosol® Trio<br>(Fresenius‡) | 6.5      | Triple         | Lactate                 | Glucose             | Low    | Improved biocompatibility; preserved<br>membrane defense                                                | Higher but not neutral pH; local<br>and systemic glucose exposure;<br>contains lactate   |

\*Deerfield, IL, USA. \*Bad Homburg, Germany. Abbreviation: GDPs, glucose degradation products.

García-López, E. *et al.* (2012) An update on peritoneal dialysis solutions *Nat. Rev. Nephrol.* doi:10.1038/nrneph.2012.13

### **NEVIEWS** NEPHROLOGY



CJ Holmes, 2009

# 7.5% Icodextrin

Relatively inert high molecular weight polymaltose glucose polymer

- Less permeable than dextrose ultrafiltration occurs for a longer period of time.
- Equivalent UF volume as a 4.25% dextrose
- Best used in a long dwell
- Reduced carbohydrate load

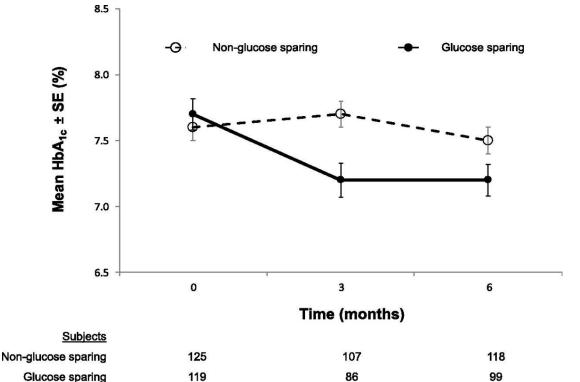
Potential advantage of reducing the long term metabolic complications associated with hypertonic dextrose

# Icodextrin

Some glucometers measure non-glucose sugars (e.g. icodextrin metabolite -Maltose): Falsely elevated readings.

Glucometers based on glucose dehydrogenase pyrroloquinolone quinone OR glucose dehydrogenase flavin-adenine dinucleotide cannot distinguish between glucose vs. maltose

#### www.glucosesafety.com


Maltose metabolites with icodextrin do not return to baseline until 2 weeks after cessation.

|                                  | Updated 6 <sup>th</sup> Nov, 201 | 9          |                          |
|----------------------------------|----------------------------------|------------|--------------------------|
| Glucose Monitor Brand            | Compatible with                  | Test Type* | Manufacturer             |
|                                  | Extraneal (Icodextrin)           |            |                          |
|                                  | PD solution (Glucose-            |            |                          |
|                                  | specific)                        |            |                          |
| FreeStyle Freedom                | Yes                              | GDH-FAD    |                          |
| FreeStyle Freedom Lite           | Yes                              | GDH-FAD    | Abbott Diabetes Care     |
| FreeStyle Lite                   | Yes                              | GDH-FAD    | www.abbottdiabetescare.c |
| FreeStyle Libre <sup>1</sup>     | Not recommended                  | GO         | om                       |
| FreeStyle Libre Pro <sup>1</sup> | Not recommended                  | GO         | Phone: 1800 801 478      |
| FreeStyle Optium Neo             | Yes                              | GDH-NAD    |                          |
| FreeStyle Optium Neo H           | Yes                              | GDH-NAD    |                          |
| FreeStyle Papillon Vision        | Yes                              | GDH-FAD    |                          |
| FreeStyle Precision Neo          | Yes                              | GDH-NAD    |                          |
| FreeStyle Precision Pro          | Yes                              | GDH-NAD    |                          |
| Optium Xido Neo                  | Yes                              | GDH-NAD    |                          |
| Precision Xceed Pro              | Yes                              | GDH-NAD    |                          |
| Assure Platinum                  | Ves                              | 60         |                          |

Under estimation of Serum amylase level

### PD Fluids with Low Glucose exposure

Mean HbA1c (±SEM) at baseline, month 3, and end of study by treatment group in the intention-to-treat population.



Serum triglyceride, very-low-density lipoprotein, and apolipoprotein B levels improved in the intervention group. Deaths and serious adverse events, including several related to extracellular fluid volume expansion were significantly high in the intervention group.



# Effect of icodextrin on uncontrolled fluid overload episodes.

|                          | Glucose po               | lymer                | Contr      | ol       |           | Risk Ratio         | Risk Ratio                               |
|--------------------------|--------------------------|----------------------|------------|----------|-----------|--------------------|------------------------------------------|
| Study or Subgroup        | Events                   | Total                | Events     | Total    | Weight    | M-H, Random, 95% C | I M-H, Random, 95% Cl                    |
| 2.4.1 12 months          |                          |                      |            |          |           |                    |                                          |
| Paniagua 2009            | 5                        | 30                   | 17         | 29       | 64.5%     | 0.28 [0.12, 0.67   |                                          |
| Subtotal (95% CI)        |                          | 30                   |            | 29       | 64.5%     | 0.28 [0.12, 0.67   |                                          |
| Total events             | 5                        |                      | 17         |          |           |                    |                                          |
| Heterogeneity: Not ap    | plicable                 |                      |            |          |           |                    |                                          |
| Test for overall effect: | Z = 2.88 (P =            | 0.004)               |            |          |           |                    |                                          |
| 2.4.2 24 months          |                          |                      |            |          |           |                    |                                          |
| Takatori 2011            | 3                        | 21                   | 9          | 20       | 35.5%     | 0.32 (0.10, 1.01   | ]                                        |
| Subtotal (95% CI)        |                          | 21                   |            | 20       | 35.5%     | 0.32 [0.10, 1.01   |                                          |
| Total events             | 3                        |                      | 9          |          |           |                    |                                          |
| Heterogeneity: Not ap    | plicable                 |                      |            |          |           |                    |                                          |
| Test for overall effect: | Z = 1.95 (P =            | 0.05)                |            |          |           |                    |                                          |
| Total (95% Cl)           |                          | 51                   |            | 49       | 100.0%    | 0.30 [0.15, 0.59   | ↓ ◆                                      |
| Total events             | 8                        |                      | 26         |          |           |                    |                                          |
| Heterogeneity: Tau² =    | 0.00; Chi <sup>2</sup> = | 0.02, df=            | = 1 (P = 0 | .88); l² | = 0%      |                    |                                          |
| Test for overall effect: | Z = 3.47 (P =            | 0.0005)              |            |          |           |                    | Favours experimental Favours control     |
| Test for subgroup diff   | erences: Chi             | <sup>2</sup> = 0.02. | df = 1 (P  | = 0.88)  | . I² = 0% |                    | r avours experimentar i r avours control |

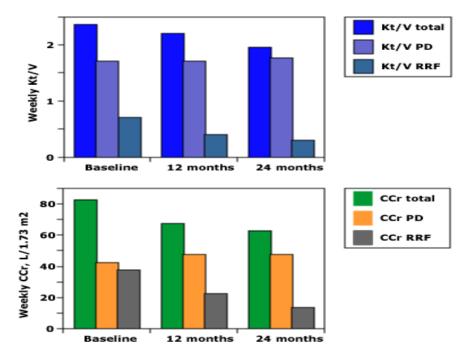
Yeoungjee Cho et al. Nephrol. Dial. Transplant. 2013;28:1899-1907



### Icodextrin vs Glucose: Effect on Mortality

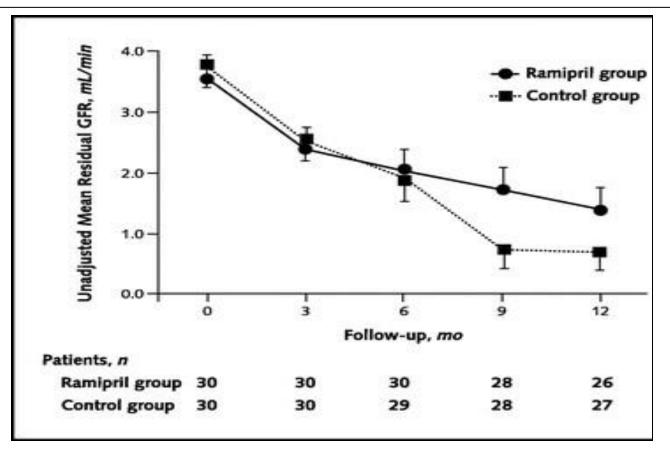
|                                   | ICO        |           | GLU                     | J      |             | Peto Odds Ratio     | Peto Odds Ratio         | Risk of Bias                            |
|-----------------------------------|------------|-----------|-------------------------|--------|-------------|---------------------|-------------------------|-----------------------------------------|
| Study or Subgroup                 | Events     | Total     |                         |        | Weight      | Peto, Fixed, 95% Cl | Peto, Fixed, 95% CI     | ABCDEFG                                 |
| 1.1.1 ≤ 6 weeks                   |            |           |                         |        |             |                     |                         |                                         |
| Bredie 2001                       | 0          | 11        | 0                       | 11     |             | Not estimable       |                         | ???? 🗣 ? 🖶 🕈                            |
| Chow 2014                         | 0          | 23        | 0                       | 33     |             | Not estimable       |                         | ••?•?•                                  |
| Finkelstein 2005                  | 0          | 47        | 0                       | 45     |             | Not estimable       |                         |                                         |
| Lin 2009                          | 1          | 98        | 0                       | 103    | 3.7%        | 7.78 [0.15, 392.35] |                         | - ••••••?•                              |
| Ota 2003                          | 0          | 26        | 0                       | 28     |             | Not estimable       |                         | ? • • • • ? •                           |
| Wolfson 2002A                     | 0          | 90        | 0                       | 85     |             | Not estimable       |                         |                                         |
| Yu 2002                           | 0          | 22        | 0                       | 22     |             | Not estimable       |                         | ? 🛨 ? 🛨 🛨 ? 🛨                           |
| Subtotal (95% CI)                 |            | 317       |                         | 327    | 3.7%        | 7.78 [0.15, 392.35] |                         | -                                       |
| Total events                      | 1          |           | 0                       |        |             |                     |                         |                                         |
| Heterogeneity: Not ap             | plicable   |           |                         |        |             |                     |                         |                                         |
| Test for overall effect:          | Z = 1.03 ( | (P = 0.3) | 31)                     |        |             |                     |                         |                                         |
|                                   |            |           |                         |        |             |                     |                         |                                         |
| 1.1.2 3-6 months                  |            |           |                         |        |             |                     |                         |                                         |
| Davies 2003                       | 0          | 27        | 0                       | 21     |             | Not estimable       |                         |                                         |
| de Moraes 2015                    | 0          | 33        | 1                       | 27     | 3.7%        | 0.11 [0.00, 5.57]   |                         |                                         |
| Konings 2003                      | 0          | 22        | 0                       | 18     |             | Not estimable       |                         | <b>? • ? • ? ? •</b>                    |
| Mistry 1994                       | 0          | 106       | 2                       | 103    | 7.4%        | 0.13 [0.01, 2.10]   |                         | $\bullet \bullet ? \bullet ? ? \bullet$ |
| Plum 2002                         | 1          | 20        | 0                       | 19     | 3.7%        | 7.03 [0.14, 354.68] |                         | - • ? • • • ? •                         |
| Subtotal (95% CI)                 |            | 208       |                         | 188    | 14.7%       | 0.34 [0.05, 2.42]   |                         |                                         |
| Total events                      | 1          |           | 3                       |        |             |                     |                         |                                         |
| Heterogeneity: Chi <sup>2</sup> = |            | · ·       |                         | = 35%  |             |                     |                         |                                         |
| Test for overall effect:          | Z = 1.08 ( | (P = 0.2) | (8)                     |        |             |                     |                         |                                         |
| 1.1.3 1-2 years                   |            |           |                         |        |             |                     |                         |                                         |
| Chang 2016                        | 1          | 49        | 0                       | 51     | 0.0%        | 7.70 [0.15, 388.20] |                         |                                         |
| Chen 2018                         | 1          | 21        | 0                       | 22     | 3.7%        | 7.75 [0.15, 390.96] |                         | - • ? ? • • ? •                         |
| Paniagua 2009                     | 0          | 30        | 6                       | 29     | 20.3%       | 0.11 [0.02, 0.58]   |                         | ••?•?•                                  |
| Posthuma 2000                     | 0          | 19        | 5                       | 19     | 16.5%       | 0.11 [0.02, 0.68]   |                         | ? • ? • ? ? •                           |
| Takatori 2011                     | 0          | 21        | 1                       | 20     | 3.7%        | 0.13 [0.00, 6.50]   |                         | ????                                    |
| Wolfson 2002B                     | 7          | 175       | 4                       | 112    | 37.4%       | 1.12 [0.33, 3.85]   | <b>_</b>                | •••••??•                                |
| Yoon 2014                         | 1          | 41        | 1                       | 39     | 0.0%        | 0.95 [0.06, 15.48]  |                         | ? 🛨 ? 🛨 🛨 ? 🛨                           |
| Subtotal (95% CI)                 |            | 266       |                         | 202    | 81.6%       | 0.39 [0.17, 0.89]   | ◆                       |                                         |
| Total events                      | 8          |           | 16                      |        |             |                     |                         |                                         |
| Heterogeneity: Chi <sup>2</sup> = | 9.51, df=  | 4 (P =    | 0.05); l <sup>2</sup> = | = 58%  |             |                     |                         |                                         |
| Test for overall effect:          | Z=2.24 (   | (P = 0.0) | 13)                     |        |             |                     |                         |                                         |
| Total (95% CI)                    |            | 791       |                         | 717    | 100.0%      | 0.42 [0.20, 0.90]   |                         |                                         |
|                                   | 40         | 791       | 4.0                     | 111    | 100.0%      | 0.42 [0.20, 0.90]   | -                       |                                         |
| Total events                      | 10         | - 0 (75   | 19                      | - 40~  |             |                     |                         |                                         |
| Heterogeneity: Chi <sup>2</sup> = |            |           |                         | = 46%  | )           |                     | 0.001 0.1 1 10 10       | 000                                     |
| Test for overall effect:          |            |           | ,                       | 2 (D   | 0.000 17-   | 0.70                | Favours ICO Favours GLU |                                         |
| Test for subgroup diff            | erences:   | Unr=      | z.zz, af =              | ∠ (P = | 0.33), 1* = | 9.770               |                         |                                         |

### Icodextrin use on other clinical outcomes


- No impact on
  - Technique survival
  - Residual renal function
  - Urine output
  - Incidence of peritonitis

Yeoungjee Cho et al. Nephrol. Dial. Transplant. 2013;28:1899-1907

AJKD 2010: doi: 10.1053/j.ajkd.2019.10.004


# Importance of RRF

- Solute clearance
- Benefits of maintaining RRF
  - Anaemia
  - Fluid management
  - BP and LVH
  - Patient survival



Increasing urine output with diuretics increases free water excretion, without increasing solute excretion

Effects of an Angiotensin-Converting Enzyme Inhibitor on Residual Renal Function in Patients Receiving Peritoneal Dialysis: A Randomized, Controlled Study



Unadjusted mean residual glomerular filtration rate (GFR) at baseline and follow-up in the ramipril group and the control group.

Wolters Kluwer

Health

OvidSP © 2003 American College of Physicians. Published by American College of Physicians.

# Preservation of RRF

Use of ACEi/ARBs for treatment of hypertension Low GDP, neutral pH PD solutions

Avoid

- Prolonged use of Aminoglycosides
- NSAIDS
- Contrast agents

#### Effect of neutral-pH, low-GDP PD solutions on RRF

|                                         | Neutral-        | pH, low-  | GDP       | Con                  | ventior | nal   |        | Std. Mean Difference | Std. Mean Difference |
|-----------------------------------------|-----------------|-----------|-----------|----------------------|---------|-------|--------|----------------------|----------------------|
| tudy or Subgroup                        | Mean            | SD        | Total     | Mean                 | SD      | Total | Weight | IV, Random, 95% CI   | IV, Random, 95% Cl   |
| ajo MA (2011)                           | 4.2             | 2.6       | 9         | 4.2                  | 4       | 3     | 1.4%   | 0.00 [-1.31, 1.31]   |                      |
| alANZ 2012                              | 3.4             | 2.79      | 40        | 3.2                  | 2.82    | 48    | 13.9%  | 0.07 [-0.35, 0.49]   |                      |
| ho (2013)                               | 2.4             | 1.72      | 32        | 2.2                  | 2.14    | 28    | 9.5%   | 0.10 [-0.41, 0.61]   |                      |
| hoi HY (2008)                           | 4.7             | 10.9      | 38        | 1.86                 | 6.44    | 30    | 10.6%  | 0.30 [-0.18, 0.79]   |                      |
| ernandez-Perpen (2012)                  | 6               | 4.4       | 5         | 4.2                  | 4       | 3     | 1.2%   | 0.37 [-1.09, 1.82]   |                      |
| im SG (2008)                            | 3.9             | 4.9       | 36        | 2.2                  | 1.8     | 33    | 10.7%  | 0.45 [-0.03, 0.93]   |                      |
| im YL (2003)                            | 2.3             | 1.2       | 16        | 1.8                  | 2.2     | 10    | 3.9%   | 0.29 [-0.50, 1.09]   |                      |
| ai KN (2012)                            | 2.3             | 2.74      | 58        | 1.69                 | 2.29    | 67    | 19.7%  | 0.24 [-0.11, 0.59]   |                      |
| ark (2012)                              | 2.9             | 3.1       | 64        | 2.9                  | 2.3     | 47    | 17.3%  | 0.00 [-0.38, 0.38]   |                      |
| zeto (2007)                             | 2.72            | 2.08      | 25        | 2.81                 | 2.87    | 25    | 8.0%   | -0.04 [-0.59, 0.52]  |                      |
| /eiss (2009)                            | 4.77            | 3.78      | 15        | 4.1                  | 2.8     | 11    | 4.0%   | 0.19 [-0.59, 0.97]   | · · · · · ·          |
| otal (95% CI)                           |                 |           | 338       |                      |         | 305   | 100.0% | 0.17 [0.01, 0.32]    | •                    |
| leterogeneity: Tau <sup>2</sup> = 0.00; | $Chi^{2} = 3.5$ | 8. df = 1 | 0 (P = 0) | .96): I <sup>2</sup> | = 0%    |       |        | -2                   | ti                   |

|                                | Neutral-                | pH, low-  | -GDP     | Con                   | ventio | nal   |        | Std. Mean Difference | Std. Mean Difference |                     |                   | ice           |     |
|--------------------------------|-------------------------|-----------|----------|-----------------------|--------|-------|--------|----------------------|----------------------|---------------------|-------------------|---------------|-----|
| Study or Subgroup              | Mean                    | SD        | Total    | Mean                  | SD     | Total | Weight | IV, Random, 95% CI   |                      | IV, Ra              | andom, 95%        | CI            |     |
| Bajo MA (2011)                 | 6.9                     | 4.2       | 11       | 3.4                   | 2.5    | 20    | 11.7%  | 1.07 [0.28, 1.86]    |                      |                     |                   | -             |     |
| balANZ 2012                    | 5.9                     | 3.25      | 76       | 5.1                   | 3.08   | 75    | 24.9%  | 0.25 [-0.07, 0.57]   |                      |                     |                   |               |     |
| Cho (2013)                     | 3.29                    | 2.61      | 32       | 1.97                  | 1.64   | 28    | 18.3%  | 0.59 [0.07, 1.11]    |                      |                     |                   |               |     |
| Choi HY (2008)                 | 5.7                     | 11        | 44       | 5.7                   | 11     | 47    | 21.8%  | 0.00 [-0.41, 0.41]   |                      |                     | -+-               |               |     |
| Fernandez-Perpen (2012)        | 7.2                     | 4.1       | 11       | 3.4                   | 2.5    | 20    | 11.5%  | 1.18 [0.38, 1.98]    |                      |                     |                   | _             |     |
| Weiss (2009)                   | 4.77                    | 3.78      | 15       | 4.1                   | 2.8    | 11    | 11.9%  | 0.19 [-0.59, 0.97]   |                      |                     |                   |               |     |
| Total (95% CI)                 |                         |           | 189      |                       |        | 201   | 100.0% | 0.45 [0.11, 0.79]    |                      |                     | •                 |               |     |
| Heterogeneity: $Tau^2 = 0.09$  | ; Chi <sup>2</sup> = 11 | .42, df = | 5(P = 0) | ).04); I <sup>2</sup> | = 56%  | :     |        |                      | - t-                 | - L                 |                   | -             | - 1 |
| Test for overall effect: Z = 2 |                         |           | 1000 A   |                       |        |       |        |                      | -4<br>Fav            | -2<br>ors [Conventi | 0<br>onal] Favors | Z<br>[Low-GDF | y 4 |

#### С

|                                                                   | Neutral- | pH, low- | -GDP       | Con                   | ventio | nal   | 9      | Std. Mean Difference | Std. Mean Difference                                  |
|-------------------------------------------------------------------|----------|----------|------------|-----------------------|--------|-------|--------|----------------------|-------------------------------------------------------|
| Study or Subgroup                                                 | Mean     | SD       | Total      | Mean                  | SD     | Total | Weight | IV, Random, 95% Cl   | IV, Random, 95% CI                                    |
| Bajo MA (2011)                                                    | 5.5      | 3.7      | 11         | 4.1                   | 3.1    | 18    | 4.8%   | 0.41 [-0.35, 1.17]   |                                                       |
| balANZ 2012                                                       | 4.9      | 2.39     | 62         | 3.9                   | 2.82   | 65    | 22.6%  | 0.38 [0.03, 0.73]    | <b>e</b>                                              |
| Cho (2013)                                                        | 2.42     | 1.72     | 32         | 2.22                  | 2.14   | 28    | 10.8%  | 0.10 [-0.41, 0.61]   |                                                       |
| Choi HY (2008)                                                    | 4.7      | 10.7     | 38         | 1.86                  | 6.44   | 30    | 12.0%  | 0.31 [-0.17, 0.79]   | 8- <b></b>                                            |
| Fernandez-Perpen (2012)                                           | 5.7      | 3.1      | 11         | 4.1                   | 3.1    | 18    | 4.8%   | 0.50 [-0.26, 1.26]   |                                                       |
| Kim SG (2008)                                                     | 3.9      | 4.9      | 36         | 2.2                   | 1.8    | 33    | 12.2%  | 0.45 [-0.03, 0.93]   | 3 <b></b>                                             |
| Kim YL (2003)                                                     | 2.3      | 1.2      | 16         | 1.8                   | 2.2    | 10    | 4.4%   | 0.29 [-0.50, 1.09]   |                                                       |
| Park (2012)                                                       | 2.9      | 3.1      | 64         | 2.9                   | 2.3    | 47    | 19.7%  | 0.00 [-0.38, 0.38]   |                                                       |
| Szeto (2007)                                                      | 2.72     | 2.08     | 24         | 2.81                  | 2.87   | 24    | 8.7%   | -0.04 [-0.60, 0.53]  |                                                       |
| Total (95% CI)                                                    |          |          | 294        |                       |        | 273   | 100.0% | 0.24 [0.08, 0.41]    | •                                                     |
| Heterogeneity: $Tau^2 = 0.00$<br>Test for overall effect: $Z = 3$ |          |          | B (P = 0.) | 78); l <sup>2</sup> = | = 0%   |       |        |                      | -2 -1 0 1 2<br>Favors [Conventional] Favors [Low-GDP] |

| Neutral-pH, low-GDP                    |                          | -GDP       | Conv     | /entio                | nal  |       | Std. Mean Difference | Std. Mean Difference |                                        |   |
|----------------------------------------|--------------------------|------------|----------|-----------------------|------|-------|----------------------|----------------------|----------------------------------------|---|
| Study or Subgroup                      | Mean                     | SD         | Total    | Mean                  | SD   | Total | Weight               | IV, Random, 95% Cl   | IV, Random, 95% CI                     |   |
| Bajo MA (2011)                         | 4.2                      | 2.6        | 9        | 4.2                   | 4    | 3     | 3.3%                 | 0.00 [-1.31, 1.31]   | 22                                     |   |
| balANZ 2012                            | 3.4                      | 2.79       | 40       | 3.2                   | 2.82 | 48    | 32.3%                | 0.07 [-0.35, 0.49]   |                                        |   |
| Fernandez-Perpen (2012)                | 6                        | 4.4        | 5        | 4.2                   | 4    | 3     | 2.7%                 | 0.37 [-1.09, 1.82]   | · · · · · · · · · · · · · · · · · · ·  |   |
| Kim SG (2008)                          | 3.5                      | 3.4        | 25       | 1.65                  | 1.97 | 21    | 16.0%                | 0.64 [0.04, 1.24]    | · · · · · · · · · · · · · · · · · · ·  |   |
| Lai KN (2012)                          | 2.3                      | 2.74       | 58       | 1.69                  | 2.29 | 67    | 45.7%                | 0.24 [-0.11, 0.59]   |                                        |   |
| Total (95% CI)                         |                          |            | 137      |                       |      | 142   | 100.0%               | 0.25 [0.01, 0.48]    | •                                      |   |
| Heterogeneity: Tau <sup>2</sup> = 0.00 | ; Chi <sup>2</sup> = 2.5 | i1, df = 4 | (P = 0.) | 64); l <sup>2</sup> = | • 0% |       |                      |                      |                                        | 7 |
| Test for overall effect: Z = 2         | 2.02 (P = 0.)            | .04)       |          |                       |      |       |                      |                      | Favors [Conventional] Favors [Low-GDP] | 2 |

©2015 by American Society of Nephrology Seychelle Yohanna et al. CJASN 2015;10:1380-1388

# Low GDP, neutral pH solutions on other outcomes

- Preserve urine output
- Less inflow pain
- No effect on:
  - Ultrafiltration volume
  - Peritoneal clearances
  - Peritonitis episodes
  - Technique failure
  - Mortality

### PD 'ADEQUACY'

#### Guidelines

#### International Society for Peritoneal Dialysis practice recommendations: Prescribing high-quality goal-directed peritoneal dialysis

Edwina A Brown<sup>1</sup>, Peter G Blake<sup>2</sup>, Neil Boudville<sup>3</sup>, Simon Davies<sup>4,5</sup>, Javier de Arteaga<sup>6</sup>, Jie Dong<sup>7</sup>, Fred Finkelstein<sup>8</sup>, Marjorie Foo<sup>9</sup>, Helen Hurst<sup>10</sup>, David W Johnson<sup>11</sup>, Mark Johnson<sup>12</sup>, Adrian Liew<sup>13</sup>, Thyago Moraes<sup>14</sup>, Jeff Perl<sup>15</sup>, Rukshana Shroff<sup>16</sup>, Isaac Teitelbaum<sup>17</sup>, Angela Yee-Moon Wang<sup>18</sup> and Bradley Warady<sup>19</sup>





Peritoneal Dialysis International 2020, Vol. 40(3) 244–253 © The Author(s) 2020



Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/0896860819895364 journals.sagepub.com/home/ptd



# Prescribing 'high quality goal-directed' PD

- To promote the provision of high-quality dialysis care by the dialysis team:
  - PROMs
  - Maintenance of fluid status
  - Maintenance of Nutritional Status
  - Removal of Toxins
- Shared decision making to allow the person doing PD to achieve his/her own life goals

# Peritoneal Dialysis Adequacy

#### Solute clearance:

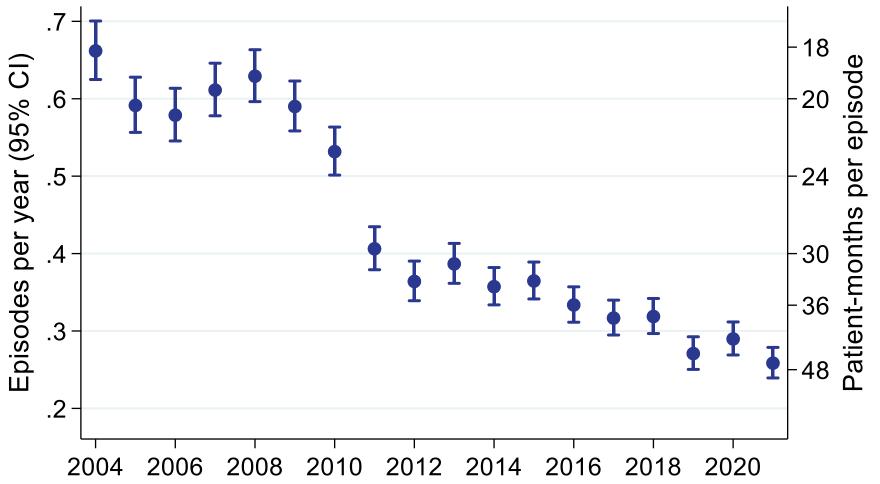
Small solute clearances can be measured by 'Adequest Test'
'Target': weekly KT/V 1.7 (urea);
In anuric patients, additional target of creatinine clearance of 45 L/week/1.73 m2.

#### **Ultrafiltration:**

PD Fluid volume drained – infused Target: 1 Litre/day

'Goal Directed PD Prescription': Shared Decision making <a href="https://doi.org/10.1177/0896860819895364">https://doi.org/10.1177/0896860819895364</a>

# **PD- Complications**


Infective Peritonitis Exit site infection **Tunnel Infection** \*Pressure related: Hernias **Dialysate leaks** Pericatheter Abd. wall Genitalia Pleural

Non-infective Access Related: Catheter obstruction **Omental entrapment** Tip migration Cuff extrusion Ultrafiltration failure Technique failure

\*Intra-abdominal Pressure lowest when supine, greatest while sitting

### PD Peritonitis Rate

Australia 2004-2021



2022 ANZDATA Annual Report, Figure 5.22



# ISPD 2022 Guidelines

### **Prevention of PD peritonitis**

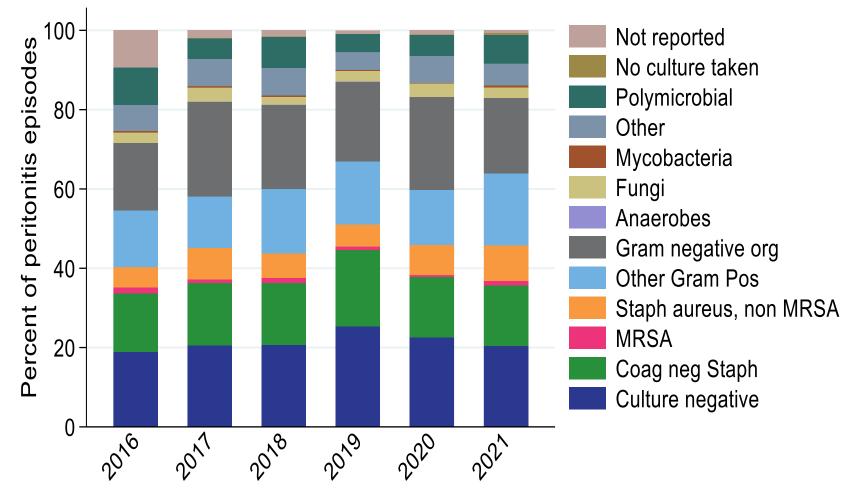
We recommend that systemic prophylactic antibiotics should be administered immediately prior to catheter insertion **(1A)** 

• We recommend daily topical application of antibiotic (mupirocin or gentamicin) cream or ointment to the catheter exit-site **(1B)**.

# ISPD 2022 Guidelines: Diagnosis



- We recommend that peritonitis should always be diagnosed when at least 2 of the following are present:
  - clinical features consistent with peritonitis, i.e. abdominal pain and/or cloudy dialysis effluent;
  - dialysis effluent white cell count >100/ $\mu$ L or >0.1 x 10<sup>9</sup>/L (after a dwell time of at least 2 hours), with >50% PMN; and
  - positive dialysis effluent culture (1C).
- We recommend that PD patients presenting with cloudy effluent should be presumed to have peritonitis and treated as such until the diagnosis can be confirmed or excluded **(1C)**.


Peritoneal Dialysis International 2022, Vol. 42(2) 110–153

### **Differential Diagnosis of Cloudy Effluent**

- Culture-positive infectious peritonitis
- Infectious peritonitis with sterile cultures

- Chemical peritonitis Eosinophilia of the effluent
- Hemoperitoneum
- Malignancy (rare)
- Chylous effluent (rare)
- Specimen taken from "dry" abdomen

#### Distribution of Organisms Causing Peritonitis Australia 2016-2021



# Treatment of PD related Peritonitis

- Every hour of delay in administering antibacterial therapy from time of presentation to hospital increased the risk of PD failure or death by 6.8%
- Start empirical antibiotics ASAP
- IP administration of antibiotics better than IV
- Intermittent IP administration of antibiotics has similar response rates as continuous IP administration

Cochrane review: Treatment for peritoneal dialysis-associated peritonitis (April 2014) DOI: 10.1002/14651858.CD005284.pub KI Reports (2016) 1, 65–72; http://dx.doi.org/10.1016/j.ekir.2016.05.003

## Antibiotics and duration of treatment

Staph epi – Stept/Enterococcus:

Staph aureus:

Gram Negative: Pseudomonas:

Culture negative:

IP Cephalosporin x 2 wks **IP** Ampicillin + Gentamicin (1 week) x 2 wks MSSA: IP Cephalosprin x 3 wks MRSA: IP Vanc x 3 wks IP Aminoglycoside 2 wks 2 antibiotics, 3 wks (High rate for recurrence and relapse) **IP** Cephalosporin 2 wks

# Catheter removal: Indications

- Peritonitis with exit site/tunnel infection
- Refractory peritonitis: No improvement after
   5 days of antibiotics
- Relapsing peritonitis: Peritonitis with same organism within 4 weeks of stopping antibiotics.
- Peritonitis with intra-abdominal pathology
- Fungal / Mycobacterial peritonitis



Special Series/Guidelines

#### ISPD peritonitis guideline recommendations: 2022 update on prevention and treatment

Philip Kam-Tao Li<sup>1,2</sup>, Kai Ming Chow<sup>1,2</sup>, Yeoungjee Cho<sup>3,4</sup>, Stanley Fan<sup>5</sup>, Ana E Figueiredo<sup>6</sup>, Tess Harris<sup>7</sup>, Talerngsak Kanjanabuch<sup>8,9</sup>, Yong-Lim Kim<sup>10</sup>, Magdalena Madero<sup>11</sup>, Jolanta Malyszko<sup>12</sup>, Rajnish Mehrotra<sup>13</sup>, Ikechi G Okpechi<sup>14</sup>, Jeff Perl<sup>15</sup>, Beth Piraino<sup>16</sup>, Naomi Runnegar<sup>17</sup>, Isaac Teitelbaum<sup>18</sup>, Jennifer Ka-Wah Wong<sup>19</sup>, Xueqing Yu<sup>20,21</sup> and David W Johnson<sup>3,4</sup>

Peritoneal Dialysis International 2022, Vol. 42(2) 110–153 © The Author(s) 2022

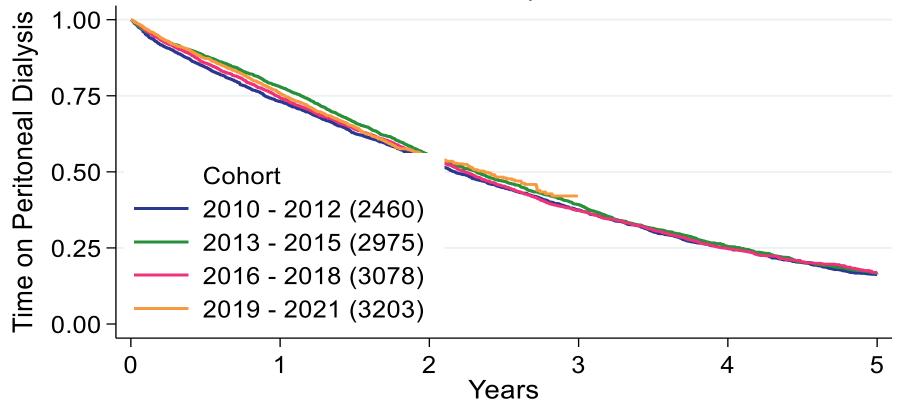
PERITONEAI

INTERNATIONAL



Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/08968608221080586 journals.sagepub.com/home/ptd




Free Download: https://journals.sagepub.com/doi/pdf/10.1177/08968608221080586

#### Patient Survival by Era Peritoneal Dialysis within 365 days of KRT start 2010 - 2021 **Censored for Transplant - Australia** 1.00 Patient Survival 0.75 0.50 Cohort 2010 - 2012 (2460) 2013 - 2015 (2975) 0.25 2016 - 2018 (3078) 2019 - 2021 (3203) 0.00 2 3 5 0 4 Years

2022 ANZDATA Annual Report, Figure 5.10.1

#### Time on Peritoneal Dialysis by Era Peritoneal Dialysis within 365 days of KRT start

2010 - 2021 Censored for Transplant - Australia



2022 ANZDATA Annual Report, Figure 5.13.1

# Survival advantage of PD over HD? Only 2 RCTs





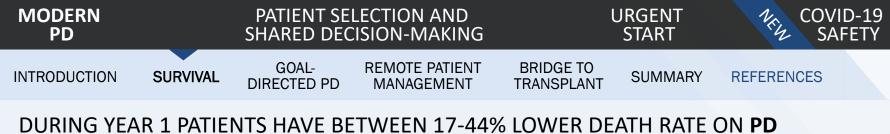
- Pooled data from two RCTs of 706 patients randomized equally to PD or HD
- There is an indication of 40% lower risk of death with PD
- This did not achieve statistical significance

1. Yu X, et al. 2018

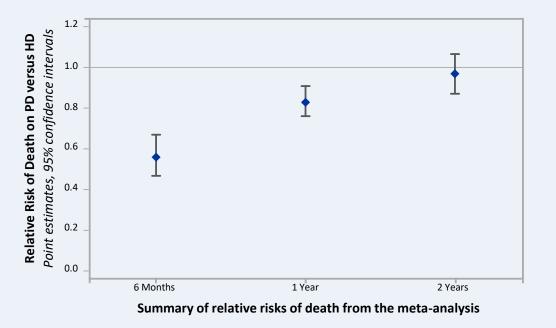
2. Korevaar JC, et al. 2003

### Multiple observational studies show PD survival

#### rates outpacing HD


Canadian Organ Replacement Registry showed **PD** to historically have higher mortality risk compared to HD – however from **2000-4 the mortality risk equalized**<sup>2</sup> Danish Society Of Nephrology Registry has shown a consistent trend in improving **PD** mortality risk from 1990-2010<sup>3</sup>

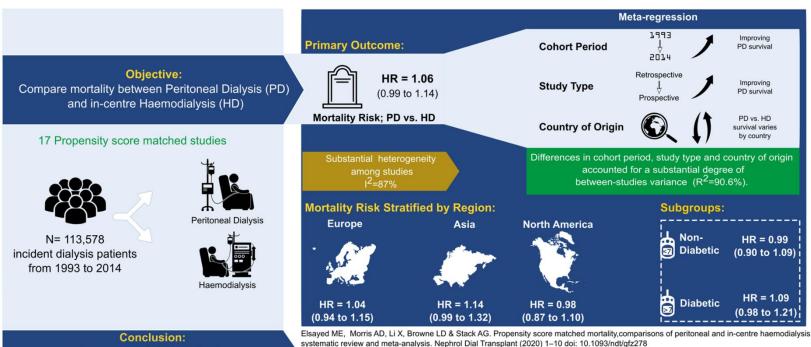
USRDS-ESRD database has shown **PD** to have consistently better survival than HD since 2007<sup>5</sup> Korean Society of Nephrology has shown an improvement of mortality risk of **PD** over HD since 2013<sup>4</sup>


COVID-19

SAFETY

ANZ Dialysis and Transplant Registry showed HD had a **23%** improvement in mortality risk from 1998-2012 however **PD** showed a **29%** improvement in mortality from 1998-2012<sup>6</sup>




VS HD<sup>35</sup>



Meta-analysis of 811,319 patients from 18 countries: those who start dialysis with **PD** have an early survival benefit vs their counterparts who start with **HD** 

Mortality rates are significantly higher on HD than on PD through the first two years

# Mortality comparisons of peritoneal and in-centre hemodialysis



Among new dialysis patients, Peritoneal Dialysis and in-centre Haemodialysis provide equivalent survival.

Elsayed ME, et al. 2020

# Other 'Special' conditions favouring HD or PD

| Condition                             | Favours PD | Favours HD | No Difference |
|---------------------------------------|------------|------------|---------------|
| CCF                                   |            | Х          | ?             |
| Hypoalbuminemia                       |            | Х          |               |
| Health related QOL                    | Х          |            | ?             |
| Survival from critical illness in ICU |            | Х          |               |
| BP control                            | Х          |            |               |
| Lower ESA dose                        | Х          |            |               |