

CHRONIC KIDNEY DISEASE REVISE NEPHROLOGY SYDNEY 2023

Dr. Surjit Tarafdar Nephrologist Blacktown Hospital, Sydney

Conjoint Senior Lecturer Department of Medicine, Western Sydney University

TAKE HOME POINTS

- Definition of CKD
- Common complications with their pathogenesis, manifestations and management
 - FLUID, ELECTROLYTE AND ACID/BASE : *Fluid overload, hyperkalaemia, metabolic acidosis*
 - CARDIOVASCULAR (leading cause of mortality): Coronary heart disease, hypertension, CCF, Strokes, Arrhythmias and Sudden Cardiac Death
 - HAEMATOPOIETIC : Anaemia and increased risk of bleeding from platelet dysfunction
 - BONE AND MINERAL METABOLISM: High turnover bone disease, low turnover bone disease(adynamic bone disease) and dialysis related amyloidosis
 - NEUROLOGIC: Uremic encephalopathy, dialysis disequilibrium syndrome, neuropathy and sleep disorders
 - ENDOCRINE: *Reduced renal clearance of insulin with advanced CKD, Growth hormone resistance*
 - SKIN: Calcific uremic arteriopathy (calciphylaxis), uremic pruritus and nephrogenic systemic fibrosis (NSF)

DEFINITION OF CHRONIC KIDNEY DISEASE (CKD)

• Defined as abnormalities of kidney structure or function, present for > 3 months, irrespective of the cause

• Diagnosis: GFR is < 60 ml/ min/ 1.73m² and/ or the following markers of kidney damage are present for > 3 months: Albuminuria: 24-hour urinary albumin excretion of 30 mg/day or higher, or urine albumin- creatinine ratio (ACR) of 30 mg/g (or **3.4 mg/mmol**) or higher

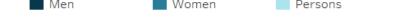
Urinary sediment abnormalities: Red or white blood cell casts may indicate the presence of glomerular injury or tubular inflammation

Imaging abnormalities: Imaging abnormalities such as polycystic kidneys, hydronephrosis or small and echogenic kidneys

Pathologic abnormalities: A kidney biopsy may reveal evidence of glomerular, vascular, or tubulointerstitial disease

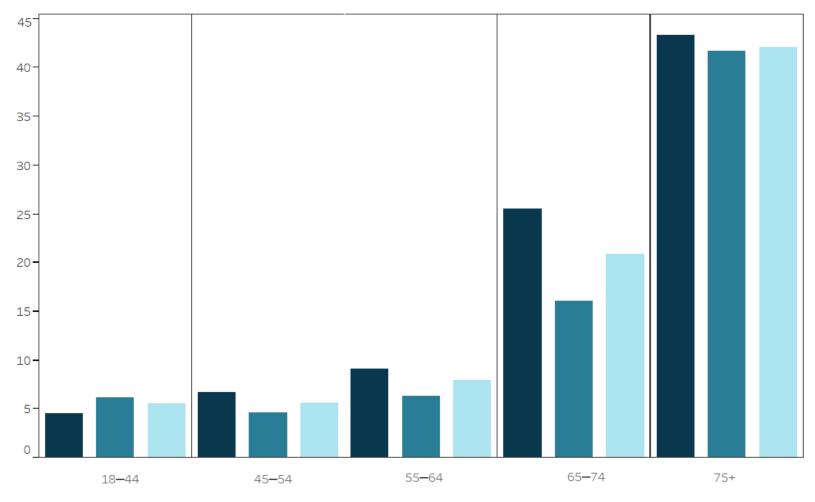
Kidney transplantation: Patients with a history of kidney transplantation are assumed to have CKD irrespective of presence or absence of abnormalities on kidney biopsy or markers of kidney damage

PREVALENCE OF CKD IN AUSTRALIA


• According to the Australian Institute of Health and Welfare (AIHW) in 2011-12:

-An estimated 1.7 million (10%) Australian adults >18 years had CKD

-Was similar for men and women


-Increased rapidly with age, with rates among those aged >75 at 42% ; for 65–74 at 21% and for 18–54 at 6%

Let us look at the chart in next slide

Per cent

Age group (years)

Prevalence of CKD, among persons aged 18 and over, by age group and sex, 2011-12

Note: Based on the presence of biomedical signs of CKD detected by abnormal results of the kidney filtration rate (eGFR) and urinary albumin creatinine ratio (ACR).

Source: AIHW analysis of the ABS Microdata: Australian Health Survey (AHS): Core Content - Risk Factors and Selected Health Conditions, 2011–12. http://www.aihw.gov.au/

KIDNEY DISEASE IMPROVING GLOBAL OUTCOMES (KDIGO) 2012 GUIDELINES FOR STAGING CKD

Category	GFR (ml/min/1.73 m^2)	Description	
GI	>90	Normal or high	
G2	60-89	Mildly decreased	
G3a	45-59	Mildly to moderately decreased	
G3b	30-44	Moderately to severely decreased	
G4	15-29	Severely decreased	
G5	<15	Kidney failure	

CARING FOR AUSTRALIAN WITH RENAL IMPAIRMENT (CARI) 2012 GUIDELINES FOR ALBUMINURIA

KIDNEY DAMAGE STAGE	URINE ALBUMIN/CREATININE RATIO (MG/MMOL)	URINE PROTEIN /CREATININE RATIO (MG/MMOL)	24 HOUR ALBUMIN (MG/DAY)	24 HOUR PROTEIN (MG/DAY)
Normoalbuminuria	<2.5 (M) <3.5 (F)	<4 (M) <6 (F)	<30	<50
Microalbuminuria (Moderately increased albuminuria)	2.5 to 25 (M) 3.5 to 35(F)	4 to 40 (M) 6 to 60 (F)	30 to 300	50 to 500
Macroalbuminuria (Severely increased albuminuria)	>25 (M) >35 (F)	>40 (M) >60 (F)	>300	>500

ETIOLOGY

- Diabetic nephropathy
- Glomerulonephritis
- Hypertension
- Autosomal dominant polycystic kidney disease
- Others e.g. cystic disease, reflux nephropathy etc.

RISK FACTORS FOR CKD

- Small for gestation birth weight
- Childhood obesity
- Diabetes mellitus
- Hypertension
- African ancestry
- Advanced age
- F/H of renal disease
- Autoimmune disease e.g., SLE
- Proteinuria
- Abnormal urinary sediment e.g., ongoing haematuria in IgA nephropathy
- Previous episode of AKI
- Structural abnormalities of the urinary tract

CONSEQUENCE OF LOSS OF RENAL FUNCTION IN CKD

- RAAS activation leads to raised glomerular blood flow and pressure and therefore raised glomerular filtration i.e., adaptive hyperfiltration in the good nephrons
- In early CKD, the raised GFR helps to maintain serum creatinine in normal range
- Vicious cycle: Sustained glomerular hyperfiltration leads to compensatory hypertrophy and eventually damaged nephrons

ESTIMATED GLOMERULAR FILTRATION RATE (EGFR)

- Relationship between GFR and nephron number not a simple linear relationship, being complicated by factors such as compensatory hyperfiltration, muscle mass, diet and tubular secretion of creatinine which can correspond to up to 40% of total creatinine excretion
- <u>Cockcroft–Gault formula</u>: estimates GFR based on plasma creatinine and patient age, weight and gender. Not in much use now.
- Modification of Diet in Renal Disease (MDRD) : is based on plasma creatinine, age and gender (NO WEIGHT).
- CKD-EPI equation mostly used now
 - More accurate at higher eGFR
 - Validated across more populations
- Age related issues with eGFR
 - In younger people, CKD-EPI will give a significantly higher eGFR value
 - In older people, CKD-EPI will give a slightly lower value

COMPLICATIONS OF CHRONIC KIDNEY DISEASE

- FLUID, ELECTROLYTE AND ACID/BASE : *Fluid overload, hyperkalaemia, metabolic acidosis*
- CARDIOVASCULAR <u>(leading cause of mortality):</u> Coronary heart disease, hypertension, CCF, Strokes, Arrhythmias and Sudden Cardiac Death
- HAEMATOPOIETIC : Anaemia and increased risk of bleeding from platelet dysfunction
- BONE AND MINERAL METABOLISM: *High turnover bone disease*, *low turnover bone disease(adynamic bone disease) and dialysis related amyloidosis*
- NEUROLOGIC: Uremic encephalopathy, dialysis disequilibrium syndrome, neuropathy and sleep disorders
- ENDOCRINE: Reduced renal clearance of insulin with advanced CKD, Growth hormone resistance
- SKIN: Calcific uremic arteriopathy (calciphylaxis), uremic pruritus and nephrogenic systemic fibrosis (NSF)

FLUID, ELECTROLYTE AND ACID BASE DISORDERS

- Sodium /water homeostasis: Prone to fluid overload and sodium intake should be <2 g/day (1 teaspoonful)
- *Hyperkalaemia*: Usually seen with decreased urine output, high-potassium diet, metabolic acidosis or drug induced hypoaldosteronism (ACEI or ARB, spironolactone)
 - Patients with DM, on CNIs (Tacrolimus and cyclosporine) more prone due to type IV RTA
 - Associated acidosis causes hyperkalaemia
- *Metabolic Acidosis*: due to increasing tendency to retain hydrogen ions
 - Hyperkalaemia potentiates metabolic acidosis
 - High anion gap metabolic acidosis in advanced CKD
 - May be normal anion gap metabolic acidosis in early (stages 1–3), in patients with diabetic nephropathy due to element of type IV RTA

CARDIOVASCULAR- COMMONEST CAUSE OF DEATH

- *Hypertension:* Data from the MDRD study showed that prevalence of HTN rose from 65 to 95 percent as the GFR fell from 85 to 15 mL/min
- Coronary heart disease: accounts for 40 to 50% of mortality in dialysis patients
 - Patients often have diffuse multi-vessel involvement with coronary calcifications
 - Along with increased traditional risk factors and increased LVH, non-traditional risk factors include uremic toxins, hyperphosphatemia, anaemia, increased Ca intake, abnormalities in bone mineral metabolism
 - Invasive angiograms carry the risk of contrast-induced nephropathy
- *Congestive heart failure:* chronic volume overload due to decreasing urine output and chronic pressure overload due to long-standing hypertension and enhanced vascular stiffness
- *Strokes, Arrhythmias and Sudden Cardiac Death (SCD):* Dialysis patients have a 5-10-fold higher relative risk of stroke
 - SCD accounts for about **one-fourth of all deaths among dialysis patients**

HAEMATOPOIETIC SYSTEM

- Normocytic, normochromic anaemia: leads to fatigue, reduced exercise tolerance and dyspnoea
- Causes of anaemia:
 - ***** Erythropoietin deficiency: Insufficient production by diseased kidney
 - * Iron deficiency: GI blood loss, blood loss during dialysis and poor oral iron absorption
 - * Increased hepcidin: Hepcidin prevents the release of iron from intestinal cells and macrophages
 - Reduced RBC life and mass
 - * Hyperparathyroidism: High PTH suppress the erythroid progenitors in bone marrow and renal EPO synthesis
 - * Drugs: ACEI or ARB lead to accumulation of AcSDKP which can down regulate erythropoiesis
 - Aluminium Overload: Sometimes used as phosphate binder can cause direct inhibition of erythropoiesis and disruption of RBC membrane function
 - * Nutritional deficiencies: Loss of water soluble vitamins in dialysis and stringent dietary restrictions
- Increased risk of bleeding due to platelet dysfunction

BONE AND MINERAL METABOLISM

- Pathophysiology
 - Phosphate retention (starts when GFR < 70 ml/min)- first step
 - Decreased serum calcium
 - Decreased 1,25-dihydroxyvitamin D (calcitriol) concentration
 - Increased fibroblast growth factor 23 (FGF-23) concentration leading to decreased calcitriol production (FGF-23 inhibits 1-alpha hydroxylation of Vit.D)
 - Repression of calcium-sensing receptors (CaSRs) in the parathyroid gland
 - Decreased expression of FGF 23 receptor 1 and co-receptor klotho in the hyperplastic parathyroid gland causes inability of FGF 23 to suppress PTH as would normally do

TYPES OF BONE DISEASE IN CKD

Low turnover bone disease (Adynamic bone disease)

- In patients with CKD stage 5, and on dialysis, adynamic bone disease is now the commonest renal bone disease
- Consequence of over-suppression of PTH by zealous clinicians
- Though mostly asymptomatic, increased risk for fractures, hypercalcaemia, vascular calcification and mortality
- Treatment : allow PTH levels to rise by decreasing the doses of calcium-based phosphate binders, decreasing or stopping calcitriol and by using non-calcium-based phosphate binders
- Aim for PTH levels two to seven times the upper limit of normal
- Atraumatic bone fractures in the presence of a serum PTH < 2 times the upper limit of normal is suggestive of adynamic disease
- High turnover bone disease (Rare now; was very common in the past)
 - Uncontrolled PTH levels lead to increased bone turnover and osteitis fibrosa cystica
 - Formation of cyst like brown tumors in and around bones
 - X-rays may show sub-periosteal erosions or cystic tumours
 - Treatment consists of phosphate control (discussed later), cinacalcet (calcimimetic) or sometimes parathyroidectomy

Bone biopsy is the gold standard but uncommonly used.....

TYPES OF BONE DISEASE IN CKD

- *Dialysis related amyloidosis (DRA)*
 - Tissue deposition of amyloid, particularly in bone, articular cartilage, synovium, muscle, tendons, and ligaments
 - Amyloid protein in DRA is derived primarily from beta2-microglobulin (beta2-m)
 - Almost exclusively seen in patients on dialysis
 - With the use of high-flux membranes that provide better clearance of beta2-m, less common now
 - Present with shoulder pain or carpal tunnel syndrome
 - X-rays show multiple bone cysts that enlarge over time
 - Treatment: optimization of dialysis with high-flux biocompatible membranes (transplant definite cure)
- Osteomalacia
 - Rarer now with strict removal of aluminium from dialysis water and diminishing use of aluminium based phosphate binders
 - Characterized by defective bone mineralisation with markedly increased osteoid volumes

NEUROLOGIC MANIFESTATIONS OF CKD

- Uremic encephalopathy
 - Patients often have asterixis and hyperreflexia with mild cognitive disturbance to delirium, seizures, coma, and death
- Dialysis disequilibrium syndrome (DDS)
 - Usually seen when patients have rapid reduction in their urea levels due to urgent haemodialysis
 - Headache, nausea, confusion, blurring of vision, seizures or even coma
 - To prevent DDS dialysis started with short durations and low blood flow rates e.g. two hours of dialysis at a relatively low blood flow rate of 150 to 200 mL/min (usually 300 mL/min)
- Uremic neuropathy
 - Symmetric, distal sensorimotor polyneuropathy with the lower limbs affected initially and sensory symptoms usually preceding the motor manifestations
 - Mononeuropathy from the entrapment of median or ulnar nerves in dialysis-associated amyloidosis
- Sleep disorders
 - Sleep apnoea is more common among ESRD patients (up to 50%)
 - Restless leg syndrome (RLS) due to iron deficiency, elevated serum calcium and uremic peripheral neuropathy
 - RLS treated with levodopa and the dopamine receptor agonists pergolide, pramipexole and ropinirole

ENDOCRINE MANIFESTATIONS IN CKD

- DM and CKD
 - Insulin requirements typically show a **biphasic** course in diabetic patients with CKD
 - In the early CKD, increased insulin requirement due to insulin resistance (uremic toxins and excess PTH cause insulin receptor defects)
 - Normally, combination of glomerular filtration and tubular secretion leads to renal clearance of insulin at 200 mL/min (compared to GFR of 120 mL/min)
 - As GFR falls below 15 to 20 mL/min, reduction in renal clearance of insulin- patients either need smaller doses of insulin/oral hypoglycemics or sometimes do not need them anymore
 - Once dialysis is initiated the need for insulin/hypoglycemics comes back

DERMATOLOGICAL MANIFESTATIONS OF CKD – PRURITUS, CALCIPHYLAXIS AND NEPHROGENIC SYSTEMIC FIBROSIS

- Uremic pruritus
 - Can be focal or generalised, and can be precipitated by external heat, sweat and stress
 - Possible association with hyperparathyroidism
 - Treatment consists of improving dialysis efficacy with bio-incompatible haemodialysis membranes and optimizing nutrition
 - Topical treatments, including skin emollients and capsaicin cream, antihistamines, gabapentin and possible role for μ opioid receptor antagonists such as naltrexone

CALCIFIC UREMIC ARTERIOPATHY (CALCIPHYLAXIS)

- A serious complication of CKD and prevalence up to 4% of all patients on dialysis, seen in predialysis as well
- High morbidity and mortality, with estimated six-month survival of approximately 50 percent
- Systemic medial calcification of the arterioles leading to ischemia and subcutaneous necrosis
- Spectrum of CKD-MBD where changes in serum calcium, phosphate, PTH and vitamin D metabolism lead to vascular and soft-tissue calcification
- Risk factors: obesity, DM, female sex, white ethnicity, increased serum phosphate and PTH, hypercoagulable states such as protein C and S deficiency and antiphospholipid syndrome, hypoalbuminemia, longer dialysis vitage and the use of drugs such as warfarin, vitamin D, calcium-based phosphate binders and systemic glucocorticoids
- Excruciatingly painful lesions tend to occur in areas with large amounts of subcutaneous fat such as thigh, abdomen and buttock (can be anywhere so have a very low threshold of suspicion)


PATHOGENESIS OF CALCIPHYLAXIS

- Skin lesions: result from reductions in the arteriolar blood flow
- Reduced blood flow: caused by calcification, fibrosis, and thrombus formation involving the dermo-hypodermic arterioles
- Hyperparathyroidism and vitamin D: Elevated plasma calcium x phosphate product (Ca x P) due to high P and/or high Ca, high PTH, calcitriol and calcium-based phosphate binders' use
- Deficiency of the following two inhibitors of vascular calcification
 - Fetuin-A normally keeps Ca and P bound together; levels are low in haemodialysis patients
 - Matrix GLA protein (MGP) is a Vitamin K2 dependent calcium binding protein that inhibits vascular mineralisation; it is inhibited by warfarin

DIAGNOSIS OF CALCIPHYLAXIS

- Suspected in patients who present with classic painful ulcerated lesions that are covered by a black eschar or painful subcutaneous nodules or plaques; and/or cutaneous necrosis, particularly on the thigh and other areas of increased adiposity
- Additional suspicious features include warfarin use, obesity, high Ca or P, and elevated PTH
- Classic presentation with painful lesions covered by eschar in the appropriate clinical setting may not need biopsy
- Punch biopsy of skin shows arteriolar calcification, subintimal fibrosis, and thrombotic occlusion

TREATMENT OF CALCIPHYLAXIS

- Sodium thiosulphate: chelates calcium and induces endothelial nitric oxide synthesis, which helps to improve tissue oxygenation
 - Given thrice weekly ((12.5–25 g IV, during dialysis)
 - Associated with high anion gap metabolic acidosis in one-third of patients
 - Nausea and vomiting in one-quarter of patients
- Optimise dialysis
- Cease warfarin
- Treat hyperphosphatemia and <u>avoid</u> calcium-containing phosphate binder
- Wound care and pain control are critical
- Wound infection is very common and needs aggressive antibiotic therapy and surgical debridement
- Hyperbaric oxygen therapy improves tissue perfusion

NEPHROGENIC SYSTEMIC FIBROSIS (NSF)

- Scleroderma-like disorder seen in patients with CKD, AKI and failing kidney transplant following exposure to gadolinium (Gd3+) containing agents used in MRI scans
- Additional risk factors: high-dosage EPO therapy, high PTH, hypothyroidism, and antiphospholipid syndrome
- Normally MRI contrast agents are chelated compounds that are excreted unchanged by the kidney
- Free Gd3+ may dissociate from the chelate with prolonged exposure to gadolinium in those with renal failure
- Free Gd3+ gets absorbed into tissues by swapping places with endogenous metals such as zinc and copper
- Gd3+ is phagocytized by macrophages, which in turn attracts circulating fibrocytes positive for CD34
- These fibrocytes transform to fibroblasts and subsequently cause fibrosis

NSF

- Although the usual time period between exposure to Gd3+ and manifestation of NSF is 2 to 4 weeks, cases have presented after years
- Skin thickening develops bilaterally in a distal to proximal pattern in both upper and lower limbs
- Bilateral flexion joint contractures can occur in up to 70 percent of patients
- Fibrosis can affect internal organs like the lung and heart
- No known treatment
- Gd3+containing contrast should be avoided with GFR< 30 ml/min
- If Gd3+ use indicated very strongly or given mistakenly to someone with advanced CKD or severe AKI, then patient should have haemodialysis immediately after exposure and a repeat session within 24 hours

MANAGEMENT OF CKD

- Reversible factors in AKI on CKD
 - Correct renal hypo-perfusion e.g. diarrhoea/vomiting/nephrotoxic medications etc.
 - Exclude urinary tract obstruction (USG)
- Therapeutic life style changes: smoking cessation, moderate exercise and reduced salt intake
- Referral to nephrologist when eGFR < 30 mL/min and/or proteinuria > 0.5 g/24 hours
- Good HTN management with either ACEI or ARB especially in the presence of proteinuria
- In those with proteinuria and oedema, initial therapy usually consists of both angiotensin inhibition and loop diuretic with addition of thiazide diuretic in resistant cases
- Good glycaemic control aiming for HbA1c < 7.0%, good lipid control, metformin should not be used when the GFR is less than 30 ml/ min/ 1.73m²
- Dipeptide peptidase-4 (DPP-4) inhibitor linagliptin is one of the few DM medication that does not need dose reduction
- SGLT2 inhibitors believed to reduce the risk of CKD progression and cardiovascular deaths among diabetic and non diabetic patients (avoid in eGFR < 25 mL/min)

'Canagliflozin and Renal Outcomes in type 2 Diabetes and Nephropathy' Perkovic V et al; N Engl J Med. 2019;380(24):2295. Epub 2019 Apr 14

MANAGEMENT OF COMPLICATIONS OF CKD

- MANAGEMENT OF HAEMATOLOGICAL COMPLICATIONS
- Anemia
 - Serum ferritin < 500 ng/ml and/or transferrin saturation < 30% should receive parenteral iron
 - Erythropoiesis stimulating agents (EPO) started after ensuring adequate iron stores when Hb < 100 g/L
 - Hold EPO when Hb > 130g/L as at greater risk for increased cardiovascular mortality and stroke
- Uremic bleeding
 - Desmopressin used preventively in patients undergoing surgery and other invasive procedures including renal biopsy
 - Cryoprecipitate for uremic bleeding

ACE INHIBITORS OR ARBS IN CKD

- ACEI or ARBs reduce protein excretion by approximately 30 to 35% in patients with nondiabetic or diabetic CKD
- DM associated proteinuria
 - Please remember the importance of good DM/BP control and lifestyle modifications
 - Multiple trials show anti-proteinuric effects of ACEI/ARBs in both types I and 2 DM
 - Please do not combine ACEI and ARB

USE OF ACEI AND ARB IN ADVANCED CKD

- <u>Ramipril</u> Efficacy In Nephropathy (REIN) trial
- Patients with nondiabetic CKD were randomly assigned to ramipril or placebo plus other antihypertensive therapy to attain a diastolic pressure below 90 mmHg
- At baseline, the mean serum creatinine was 212 mmol/L and mean protein excretion was 5.3 g/day
- Renal benefit of ramipril:
 - With baseline GFR 11 to 33 mL/min- decreased rate of GFR decline by 20% and incidence of ESRD by 33%
 - With baseline GFR 33 to 51 mL/min- decreased rate of GFR decline by 22% and incidence of ESRD by 37%
 - With baseline GFR 51 to 101 mL/min- decreased rate of GFR decline by 35 % and incidence of ESRD by 100%

MY PRACTICE OF DOS AND DON'TS WITH ACEI/ARB

- Start low dose e.g., 1.25/2.5 mg of perindopril or 20 mg valsartan
- Check EUC in 5-7 days and if creatinine > 20 units over baseline then cannot tolerate
- If can tolerate the initial dose, then cautious up titration
- If initial K over 5, then consider K lowering strategy (below) for few weeks and then introduce ACEI/ARB
- Have K lowering plan at the same time as initiation of therapy:
 - Low K diet (print out of foods to avoid)
 - Frusemide or thiazide diuretic (lower K)
 - Occ use resonium 15-30 g maybe 2-3 times a week (ensure not CONSTIPATED)
 - Use sodium biacarbonate tablets in those with HCO3<18 as helps to lower K indirectly
 - Patiromer (Veltassa) 8.4 g OD may be titrated up to 3 tablets (NOT ON PBS)

SGLT2 INHIBITORS

- Dapagliflozin and Prevention of Adverse Outcomes in Chronic Kidney Disease (DAPA-CKD) trial
 - 4304 individuals with eGFR 25 to 75 mL/min/1.73 m² and urine ACR 200 to 5000 mg/g randomly assigned to dapagliflozin (10 mg) or placebo
 - 2/3rd had type 2 diabetes and 98% on ACEI or ARB
 - At 2.4 years, dapagliflozin reduced all-cause mortality (4.7 versus 6.8%), and incidence of ESKD (5.1 versus 7.5%)
- Canagliflozin Cardiovascular Assessment Study (CANVAS) program shown renoprotective benefit in DM patients with and without albuminuria

TREATMENT OF CKD MBD

- **4 Goals:** Reversal of hyperphosphatemia; optimising Vit D and Ca balance; prevention of high PTH and vascular calcification; and maintenance of bone health
- Phosphate binding agents
 - Ca containing binders: Potential for hypercalcaemia and soft tissue calcification, calcific uremic arteriopathy
 - Non-calcium containing binders : sevelamer, lanthanum carbonate, and sucroferric oxyhydroxide.
 - Calcitriol, the active form of vitamin D (1,25 hydroxyvitamin D3) used to reduce PTH (beware that can raise serum calcium)

HIGH PTH

- Calcimimetic
 - Cinacalcet : mimics the action of increased Ca on the Ca sensing receptor (CaSR) on the parathyroid gland and therefore inhibit PTH secretion
 - Use associated with hypocalcaemia and adynamic bone disease due to excess suppression of PTH
- *Parathyroidectomy in:*
 - Persistent hypercalcemia
 - Persistent hyperphosphatemia
 - Persistently elevated PTH despite adequate treatment
 - Progressive extra skeletal calcifications including calciphylaxis
 - Persistent pruritis
 - Kidney transplant candidates with persistently elevated PTH and parathyroid hyperplasia; persistently elevated PTH with hypercalcemia and unexplained worsening of allograft function

MANAGEMENT OF CKD

• TREATMENT OF ACIDOSIS

- Metabolic acidosis increases the rate of progression of CKD and mortality
- Patients with serum bicarbonate <20 meq/L should receive alkali supplementation
- Alkali supplementation is associated with slower decline of GFR
- VACCINATION IN CKD
 - Generally reduced response to vaccination
 - All CKD patients with GFR < 30 ml/min should be vaccinated against pneumococci, hepatitis B and influenza
 - Annual inactivated influenza vaccine (live influenza vaccine is contraindicated in CKD)

PREPARATION FOR RENAL REPLACEMENT THERAPY

- Multidisciplinary care with access to dietary counselling, education and counselling about different dialysis modalities, transplant, vascular access surgery and psychosocial care
- Forearm veins should be preserved by avoiding venepunctures and cannulations
- As per the United States Renal Data System (USRDS) 2018 report, for patients starting dialysis in 2011, the adjusted five-year survival was 52 % for patients on PD and 42 % for those on hemodialysis
- Observed survival is best in patients treated with home hemodialysis:
 - 89 percent at 5 years
 - 74 percent at 15 years in nondiabetics
 - 50 percent at 15 years overall

THANK YOU

Imagination is more important than knowledge

Albert Einstein

